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Steganography = Information Hiding Theory

The sender embeds a hidden message into a cover object (eg.
a digital multimedia file) by slightly distorting it.

The recipient retrieves the hidden message from the distorted
cover object.

The existence of the message is impossible to detect by any
third party.
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Detecting the hidden message by a third party

by naked eye/ear/...

by powerful statistical methods

The amount of noise naturally present in the cover object
determines the amount of distortion that can be introduced.

Examples: lossy compression (image/audio/...)

Is the third party an adversary (enemy)?

information hiding/embedding
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Example: cover object & stego file

JPEG cover object size: 271,560 bits (JPEG compression 1:23)

payload: 10,000 random bits embedded
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Representation of cover objects

The cover object is a sequence of integers from
D = {0, . . . , 2e − 1}. Typically e ∈ {8, 12, 16}.

Example:
D = set of color intensities (grayscale or RGB)

For simplicity we’ll call the elements of D pixel values
(could be also “audio pixels” etc.) and assume D = Z.
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Pixels → Message Symbols

S ... set of message symbols

Retrieving information from pixel values:

s : Z → S

To embed a given symbol z ∈ S into a given pixel value x ∈ Z,
the sender modifies x  x ′ so that:

s(x ′) = z , and

|x ′ − x | is minimized.
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Example of Symbol-assignment function

s : Z → Z3

s(x) := x mod 3

This requires only ±1 changes, whose number will be the
measure of distortion.
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Covering Codes

We need to manage the trade-off between
the amount of communicated information and
the amount of introduced distortion.

Galand & Kabatiansky, Steganography via covering codes.
(ISIT 2003)

Syndrome coding: The hidden message is the syndrome of the
vector of message symbols w.r.t. a fixed r × n parity check matrix.
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The number of changes performed by the sender

upper bounded by
R(C ) := max

x∈Fn
q

d(x ,C )

measured by

Ra(C ) := q−n
∑
x∈Fn

q

d(x ,C )

... new invariant: “average distance to code”
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Distortion rate & information rate

distortion rate:

ρ :=
R(C )

n
or ρ :=

Ra(C )

n

is (an upper bound on) the probability that a given pixel will be
subjected to a change

information rate:
α :=

r

n
log2 q

is the number of message bits per pixel
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q = 2: α versus ρ trade-off

α(ρ) ≤ H2(ρ) = −ρ log(ρ) − (1 − ρ) log(1 − ρ)
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Binary case: optimal codes with r = n − 2

... completely classified under the Ra(C ) measure:
Khatirinejad & PL (Discrete Appl. Math., in press)
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Restricting the embedding positions

During the JPEG compression of the raw image, DCT coefficients
have to be rounded to integers.

The sender may employ “dishonest rounding” to embed
information.

The sender would like to utilize only those values where the
dishonest rounding is hard to detect. (17.502 → 17 hurts less than
17.813 → 17.)

The receiver (and the attacker) do not have access to this side
information.
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Restricting the embedding positions: “Wet Paper Codes”

Fridrich, Goljan, PL & Soukal, “Writing on wet paper”
(IEEE Trans. Signal Process. 2005)

Theorem. Suppose that we use random binary linear codes of
length n, and suppose that the sender can change k positions
prescribed to him (and not known to the receiver), where n >> k.
The expected number of bits that the sender can communicate is
k + ε(k), where |ε(k)| < k228−k/4.
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Wet Paper Codes - proof of the theorem

We use variable rate codes: The sender will keep adding rows to H
(pseudo-randomly generated) as long as the system H̄cT = mT is
solvable, where c ∈ Fk

2 is the vector corresponding to the k
changeable positions, H̄ are the columns of H corresponding to c ,
and m is a part of the message to be communicated.

The probability that the F2-rank of a random r × k binary matrix
is equal to s is

Pr ,k(s) = 2s(r+k−s)−rk
s−1∏
i=0

(
1 − 2i−r

) (
1 − 2i−k

)
1 − 2i−s

.

Using this we compute for each b ≥ 0 the probability that the
sender can communicate exactly b bits.
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Cells - definition

We partition the cover object into disjoint segments, each of which
consists of d pixels.

cell ... an element of Zd
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An example: Pooling pixels into pairs

Colours denote message symbols.

pixel pooling no pooling
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= log2 5
1 ≈ 2.3 = log2 32

2 ≈ 1.6
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One change per cell: Symbol-assignment function

s : Zd → Z2d+1

s(x1, . . . , xd) :=

(
d∑

i=1

ixi

)
mod (2d + 1). (1)

In order to embed any symbol in Z2d+1 into any cell in Zd using
(1), at most one ±1-change is required.
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One change per cell: Theorem

Fridrich & PL (IEEE Trans. Inf. Th. 2007)

Theorem. The scheme that uses the symbol-assignment function
(1) and then applies some (2d + 1)-ary Hamming code is never
worse than the scheme that changes individual pixels
independently (without pooling) at the very same distortion rate,
applying ternary Hamming codes.
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Strict Sum Sets - definitions

Let C ⊆ Zn.

C + C := {x + y : x , y ∈ C , x 6= y }

−C := {−x : x ∈ C }
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Symmetric strict sum cover of Zn

A subset S ⊆ Zn is an SSSC(n) if

S + S = Zn

0 ∈ S

−S = S .

Lemma. If A = {0,±a1, . . . ,±ad } is an SSSC(n), then

s(x1, . . . , xd) =

(
d∑

i=1

aixi

)
mod n

is a symbol-assignment function that allows the sender to embed
any symbol in Zn into any cell in Zd by at most two ±1-changes.
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Maximizing the number of message symbols

nγ(k) := the largest n s.t. ∃ SSC(n) of size k.
(Graham & Sloane 1980, Haanpää 2004)

n̂γ(k) := the largest n s.t. ∃ SSSC(n) of size k.

Proposition. For 3 ≤ k ≤ 13, k odd, we have n̂γ(k) = nγ(k).

Proposition. Let k = 2d + 1. Then n̂γ(k) ≥ d2 + 3d − 1.
(This beats the one-change-per-cell scheme slightly.)

Please see the paper for proofs.
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Open Problems

The equality n̂γ(k) = nγ(k)

may hold for a larger set of values k.

The bound n2 + 3d − 1 is not tight, improve it.

It appears that the optimal covers often possess a lot of
symmetry. (Similarity with multiplier theorems for difference
sets?)
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