Sum Covers in Steganography

Petr Lisoněk
Simon Fraser University
Vancouver, BC, Canada

Algebraic and Combinatorial Coding Theory • ACCT2008
Pamporovo
20 June 2008
(1) Steganography

- Introduction
- An Example
- Symbol-assignment Functions
(2) Covering codes
- Syndrome Coding
- Wet Paper Codes
(3) Schemes with Pooling
- Cells of Pixels
- One change per cell
- Two changes per cell

Steganography $=$ Information Hiding Theory

- The sender embeds a hidden message into a cover object (eg. a digital multimedia file) by slightly distorting it.
- The recipient retrieves the hidden message from the distorted cover object.
- The existence of the message is impossible to detect by any third party.

Detecting the hidden message by a third party

- by naked eye/ear/...
- by powerful statistical methods

The amount of noise naturally present in the cover object determines the amount of distortion that can be introduced.

Examples: lossy compression (image/audio/...)

Is the third party an adversary (enemy)?
information hiding/embedding

Example: cover object \& stego file

JPEG cover object size: 271,560 bits (JPEG compression 1:23) payload: 10,000 random bits embedded

Representation of cover objects

- The cover object is a sequence of integers from $D=\left\{0, \ldots, 2^{e}-1\right\}$. Typically $e \in\{8,12,16\}$.
- Example:
$D=$ set of color intensities (grayscale or RGB)
- For simplicity we'll call the elements of D pixel values (could be also "audio pixels" etc.) and assume $D=\mathbb{Z}$.

Pixels \rightarrow Message Symbols

S ... set of message symbols
Retrieving information from pixel values:

$$
s: \mathbb{Z} \rightarrow S
$$

To embed a given symbol $z \in S$ into a given pixel value $x \in \mathbb{Z}$, the sender modifies $x \rightsquigarrow x^{\prime}$ so that:

- $s\left(x^{\prime}\right)=z$, and
- $\left|x^{\prime}-x\right|$ is minimized.

Example of Symbol-assignment function

$$
\begin{gathered}
s: \mathbb{Z} \rightarrow \mathbb{Z}_{3} \\
s(x):=x \bmod 3
\end{gathered}
$$

This requires only $\pm \mathbf{1}$ changes, whose number will be the measure of distortion.

Covering Codes

We need to manage the trade-off between the amount of communicated information and the amount of introduced distortion.

Galand \& Kabatiansky, Steganography via covering codes. (ISIT 2003)

Syndrome coding: The hidden message is the syndrome of the vector of message symbols w.r.t. a fixed $r \times n$ parity check matrix.

The number of changes performed by the sender

upper bounded by

$$
R(C):=\max _{x \in \mathbb{F}_{q}^{n}} d(x, C)
$$

measured by

$$
R_{a}(C):=q^{-n} \sum_{x \in \mathbb{F}_{q}^{n}} d(x, C)
$$

... new invariant: "average distance to code"

Distortion rate \& information rate

distortion rate:

$$
\rho:=\frac{R(C)}{n} \quad \text { or } \quad \rho:=\frac{R_{a}(C)}{n}
$$

is (an upper bound on) the probability that a given pixel will be subjected to a change
information rate:

$$
\alpha:=\frac{r}{n} \log _{2} q
$$

is the number of message bits per pixel

$q=2: \alpha$ versus ρ trade-off

$$
\alpha(\rho) \leq H_{2}(\rho)=-\rho \log (\rho)-(1-\rho) \log (1-\rho)
$$

Binary case: optimal codes with $r=n-2$

... completely classified under the $R_{a}(C)$ measure: Khatirinejad \& PL (Discrete Appl. Math., in press)

Restricting the embedding positions

During the JPEG compression of the raw image, DCT coefficients have to be rounded to integers.

The sender may employ "dishonest rounding" to embed information.

The sender would like to utilize only those values where the dishonest rounding is hard to detect. ($17.502 \rightarrow 17$ hurts less than $17.813 \rightarrow 17$.)

The receiver (and the attacker) do not have access to this side information.

Restricting the embedding positions: "Wet Paper Codes"

Fridrich, Goljan, PL \& Soukal, "Writing on wet paper" (IEEE Trans. Signal Process. 2005)

Theorem. Suppose that we use random binary linear codes of length n, and suppose that the sender can change k positions prescribed to him (and not known to the receiver), where $n \gg k$. The expected number of bits that the sender can communicate is $k+\epsilon(k)$, where $|\epsilon(k)|<k^{2} 2^{8-k / 4}$.

Wet Paper Codes - proof of the theorem

We use variable rate codes: The sender will keep adding rows to H (pseudo-randomly generated) as long as the system $\bar{H} c^{T}=m^{T}$ is solvable, where $c \in \mathbb{F}_{2}^{k}$ is the vector corresponding to the k changeable positions, \bar{H} are the columns of H corresponding to c, and m is a part of the message to be communicated.

The probability that the \mathbb{F}_{2}-rank of a random $r \times k$ binary matrix is equal to s is

$$
P_{r, k}(s)=2^{s(r+k-s)-r k} \prod_{i=0}^{s-1} \frac{\left(1-2^{i-r}\right)\left(1-2^{i-k}\right)}{1-2^{i-s}}
$$

Using this we compute for each $b \geq 0$ the probability that the sender can communicate exactly b bits.

Cells - definition

We partition the cover object into disjoint segments, each of which consists of d pixels.
cell \ldots an element of \mathbb{Z}^{d}

An example: Pooling pixels into pairs

Colours denote message symbols.

embedding efficiency

$$
=\frac{\log _{2} 5}{1} \approx 2.3
$$

embedding efficiency

$$
=\frac{\log _{2} 3^{2}}{2} \approx 1.6
$$

One change per cell: Symbol-assignment function

$$
\begin{gather*}
s: \mathbb{Z}^{d} \rightarrow \mathbb{Z}_{2 d+1} \\
s\left(x_{1}, \ldots, x_{d}\right):=\left(\sum_{i=1}^{d} i x_{i}\right) \bmod (2 d+1) . \tag{1}
\end{gather*}
$$

In order to embed any symbol in $\mathbb{Z}_{2 d+1}$ into any cell in \mathbb{Z}^{d} using (1), at most one ± 1-change is required.

One change per cell: Theorem

Fridrich \& PL (IEEE Trans. Inf. Th. 2007)

Theorem. The scheme that uses the symbol-assignment function (1) and then applies some $(2 d+1)$-ary Hamming code is never worse than the scheme that changes individual pixels independently (without pooling) at the very same distortion rate, applying ternary Hamming codes.

Strict Sum Sets - definitions

Let $C \subseteq \mathbb{Z}_{n}$.

$$
\begin{aligned}
C+C & :=\{x+y: x, y \in C, x \neq y\} \\
& -C:=\{-x: x \in C\}
\end{aligned}
$$

Symmetric strict sum cover of \mathbb{Z}_{n}

A subset $S \subseteq \mathbb{Z}_{n}$ is an $\operatorname{SSSC}(n)$ if

- $S+S=\mathbb{Z}_{n}$
- $0 \in S$
- $-S=S$.

Lemma. If $A=\left\{0, \pm a_{1}, \ldots, \pm a_{d}\right\}$ is an $\operatorname{SSSC}(n)$, then

$$
s\left(x_{1}, \ldots, x_{d}\right)=\left(\sum_{i=1}^{d} a_{i} x_{i}\right) \bmod n
$$

is a symbol-assignment function that allows the sender to embed any symbol in \mathbb{Z}_{n} into any cell in \mathbb{Z}^{d} by at most two ± 1-changes.

Maximizing the number of message symbols

$n_{\gamma}(k):=$ the largest n s.t. $\exists \operatorname{SSC}(n)$ of size k.
(Graham \& Sloane 1980, Haanpää 2004)
$\hat{n}_{\gamma}(k):=$ the largest n s.t. $\exists \operatorname{SSSC}(n)$ of size k.

Proposition. For $3 \leq k \leq 13, k$ odd, we have $\hat{n}_{\gamma}(k)=n_{\gamma}(k)$.
Proposition. Let $k=2 d+1$. Then $\hat{n}_{\gamma}(k) \geq d^{2}+3 d-1$.
(This beats the one-change-per-cell scheme slightly.)
Please see the paper for proofs.

Open Problems

- The equality $\hat{n}_{\gamma}(k)=n_{\gamma}(k)$ may hold for a larger set of values k.
- The bound $n^{2}+3 d-1$ is not tight, improve it.
- It appears that the optimal covers often possess a lot of symmetry. (Similarity with multiplier theorems for difference sets?)

